Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome
نویسندگان
چکیده
The resolvase Sin regulates DNA strand exchange by assembling an elaborate interwound synaptosome containing catalytic and regulatory Sin tetramers, and an architectural DNA-bending protein. The crystal structure of the regulatory tetramer was recently solved, providing new insights into the structural basis for regulation. Here we describe the selection and characterization of two classes of Sin mutations that, respectively, bypass or disrupt the functions of the regulatory tetramer. Activating mutations, which allow the catalytic tetramer to assemble and function independently at site I (the crossover site), were found at approximately 20% of residues in the N-terminal domain. The most strongly activating mutation (Q115R) stabilized a catalytically active synaptic tetramer in vitro. The positions of these mutations suggest that they act by destabilizing the conformation of the ground-state site I-bound dimers, or by stabilizing the altered conformation of the active catalytic tetramer. Mutations that block activation by the regulatory tetramer mapped to just two residues, F52 and R54, supporting a functional role for a previously reported crystallographic dimer-dimer interface. We suggest how F52/R54 contacts between regulatory and catalytic subunits might promote assembly of the active catalytic tetramer within the synaptosome.
منابع مشابه
Orchestrating serine resolvases.
A remarkable feature of the serine resolvases is their regulation: the wild-type enzymes will catalyse intra- but not inter-molecular recombination, can sense the relative orientation of their sites and can exchange strands directionally, despite the fact that there is no net release of chemical bond energy. The key to this regulation is that they are only active within a large intertwined comp...
متن کاملArchitecture of a Serine Recombinase-DNA Regulatory Complex
An essential feature of many site-specific recombination systems is their ability to regulate the direction and topology of recombination. Resolvases from the serine recombinase family assemble an interwound synaptic complex that harnesses negative supercoiling to drive the forward reaction and promote recombination between properly oriented sites. To better understand the interplay of catalyti...
متن کاملEffect of Mutation in Efflux Pump Regulatory Protein (MexR) of Pseudomonas aeruginosa: A Bioinformatic Study
ABSTRACT Background and Objectives: Pseudomonas aeruginosa is an important non-fermenting gram-negative hospital-acquired pathogen. Treatment of P. aeruginosa infections has become more challenging due to overexpression of efflux pumps. The aim of the present study was to apply in silico analysis to evaluate the structure of the effl...
متن کاملرابطهی عدم بیان پروتئین تیروزینکیناز بروتون و بروز جهش در نواحی غیرکدکنندهی ژن, در بیماران آگاماگلوبولینمی وابسته به جنس
Correlation of Null Btk Expression and Gene Noncoding Mutations in XLA Patients Nasseri S1, Sorouri R2, Pourpak Z3, Rezaei N4, Moin M5, Parvaneh N6, Aghamohammadi A7 1 Dept of Molecular Biology, Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran 2 Baqiyatallah University of Medical Sciences, Tehran, Iran and, Zanjan University of Medical Scien...
متن کاملA Perfect Specialization Model for Gravity Equation in Bilateral Trade based on Production Structure
Although initially originated as a totally empirical relationship to explain the volume of trade between two partners, gravity equation has been the focus of several theoretic models that try to explain it. Specialization models are of great importance in providing a solid theoretic ground for gravity equation in bilateral trade. Some research papers try to improve specialization models by addi...
متن کامل